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Alzheimer’s disease (AD) patients suffer progressive cerebral atrophy before dementia onset. However, the region-specific atrophic
processes and the influences of age and apolipoprotein E (APOE) on atrophic trajectory are still unclear. By mapping the region-
specific nonlinear atrophic trajectory of whole cerebrum from amnestic mild cognitive impairment (aMCI) to AD based on longitudinal
structural magnetic resonance imaging data from Alzheimer’s disease Neuroimaging Initiative (ADNI) database, we unraveled a
quadratic accelerated atrophic trajectory of 68 cerebral regions from aMCI to AD, especially in the superior temporal pole, caudate, and
hippocampus. Besides, interaction analyses demonstrated that APOE ε4 carriers had faster atrophic rates than noncarriers in 8 regions,
including the caudate, hippocampus, insula, etc.; younger patients progressed faster than older patients in 32 regions, especially for
the superior temporal pole, hippocampus, and superior temporal gyrus; and 15 regions demonstrated complex interaction among age,
APOE, and disease progression, including the caudate, hippocampus, etc. (P < 0.05/68, Bonferroni correction). Finally, Cox proportional
hazards regression model based on the identified region-specific biomarkers could effectively predict the time to AD conversion
within 10 years. In summary, cerebral atrophic trajectory mapping could help a comprehensive understanding of AD development
and offer potential biomarkers for predicting AD conversion.
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Introduction
Alzheimer’s disease (AD) is a serious neurodegenerative
disease that progressively impairs the multidimensional
cognitive functions of the elderly. Although mounting
clinical studies have shown that it is difficult to cure
dementia based on current medical technology, early
intervention can effectively slow down AD conversion
(Norton et al. 2014; Siemers et al. 2016; Kivipelto et al.
2018). Thus, identifying the high-probable AD patients
before severe cognitive impairment is crucial for early
prevention. Amnestic mild cognitive impairment (aMCI)
is considered as a prodromal stage of AD, and most of
the elderly with aMCI eventually progress to demen-
tia at an annual rate of about 10–15% (Petersen et al.
2001; Levey et al. 2006; Risacher et al. 2009). Current
neuroimaging research on the longitudinal trajectories
of brain structural and functional changes in aMCI has
led to a deeper understanding of AD development and
offered potential biomarkers for the early prediction and

prevention of AD (Jack et al. 2010; Delor et al. 2013; Jack Jr
and Holtzman 2013; Lindemer et al. 2015; Guerrero et al.
2016; Corriveau-Lecavalier et al. 2019; Wang et al. 2020).

AD patients suffered severe gray matter atrophy in
widespread brain regions, including the medial temporal
lobes (MTL), posterior cingulate cortex (PCC), and so on
(Karas et al. 2004; Whitwell et al. 2008; Pini et al. 2016).
Detectable gray matter atrophy has been identified up
to ten years before clinical AD, even when mild cogni-
tive decline is absent (Tondelli et al. 2012). Longitudi-
nal trajectory analyses also demonstrated progressive
atrophy during the process of AD conversion in several
brain regions, such as the hippocampus, amygdala, and
entorhinal cortex (Younes et al. 2014; Pegueroles et al.
2017; Younes et al. 2019). These studies highlighted the
potentials of brain morphometric measures in monitor-
ing disease progression and early predicting AD conver-
sion. However, most prior studies delineating atrophic
trajectory from aMCI to AD focused on only limited brain
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regions (Jack Jr et al. 2008; An et al. 2016; Bilgel and
Jedynak 2019). Furthermore, many longitudinal studies
only explored the linear atrophic progress with AD pro-
gression because of limited follow-up time points; little
is known about the nonlinear atrophic trajectory from
aMCI to AD (Jack Jr et al. 2008; Lo et al. 2011; Cor-
riveau-Lecavalier et al. 2019; Dicks et al. 2019). Thus, this
study focused on portraying the nonlinear longitudinal
atrophic trajectories of the whole cerebrum from aMCI
to AD.

It is well known that AD conversion could be regu-
lated by several risk factors, such as the ε4 variants of
the apolipoprotein E (APOE) and aging (Armstrong 2019),
which raises questions about whether and how these
risk factors affect brain atrophic trajectory during AD
development. APOE ε4 is the most influential genetic
risk factor for AD (Hsiung et al. 2004). Early studies
had found that APOE ε4 carriers had severer gray mat-
ter loss than noncarriers in the AD, aMCI, and even
cognitive-normal adults (Spampinato et al. 2011; Taylor
et al. 2014; Susanto et al. 2015; Nao et al. 2017). Moreover,
aging is another strong risk factor for AD and brain
atrophy. Strong evidence supports an increased risk of
developing AD increases with aging (Guerreiro and Bras
2015). However, it is interesting to note that more severe
brain atrophy was found in younger AD patients, includ-
ing the MTL and inferior parietal lobe (Fan et al. 2012);
longitudinal studies have also shown that early-onset
AD patients suffered more rapid cortical atrophy than
late-onset AD (Cho et al. 2013). Hence, we hypothesized
that APOE polymorphism and aging could modulate the
atrophic trajectory of the cerebral subregions during AD
conversion.

This study aimed to map the atrophic trajectory of
the whole cerebrum from early aMCI to AD onset. Based
on the longitudinal structural magnetic resonance imag-
ing (sMRI) data from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) datasets, a linear mixed-effects (LME)
model was introduced to identify brain regions whose
atrophic trajectories following aging are faster for aMCI
patients who finally progressed to AD relative to cogni-
tively normal (CN). Then we delineated the atrophic tra-
jectories of these brain regions as a function of time-to-
conversion and explored the regulation effects of APOE ε4
and aging risk factors on the atrophic trajectories. Finally,
based on the identified brain volumetric features, we
introduced a Cox proportional hazards regression model
to test the potentials of these identified volumetric fea-
tures in predicting the conversion of AD. The pipeline of
this study is shown in Fig. 1.

Materials and methods
Participants
Datasets used in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
project (http://adni.loni.usc.edu). We downloaded the
longitudinal clinical and sMRI data of ADNI 1/GO/2/3

datasets from the Image Data Archive at the Laboratory
of Neuro Imaging (IDA, https://ida.loni.usc.edu/login.
jsp). We first enrolled the aMCI and CN subjects based on
the reported diagnosis of the ADNI database according
to the published criteria (Petersen et al. 2010). Second,
we determined the stage of dementia during the follow-
up based on the CDRSB scores (O’Bryant et al. 2008):
CDRSB scores = 0 for normal cognitive stage, CDRSB
scores from 0.5 to 4 for mild cognitive impairment
(MCI) stage, and CDRSB scores ≥4.5 for dementia stage.
For CN controls, their cognition must maintain normal
(CDRSB = 0) at all follow-up times. The aMCI converters
(aMCI_C) patients should start with MCI (4 ≥ CDRSB ≥0.5)
and finally progress to AD (CDRSB ≥4.5) during follow-
up. The stable aMCI (aMCI_S) should start with MCI
but not progress to dementia or revert to CN during
follow-up (4 ≥ CDRSB ≥0.5). Based on the above inclusion
criteria, we initially enrolled 278 CN, 281 aMCI_C, and 290
aMCI_S subjects. After a series of quality control steps
(see Supplementary Fig. 1), the longitudinal sMRI data of
232 CN subjects (1265 sMRI scans), 276 aMCI_C patients
(1709 sMRI scans), and 279 aMCI_S patients (1669 sMRI
scans) were finally recruited in the formal analyses.
Each subject had at least two follow-up sMRI scans. We
additional enrolled 24 qualified subjects (including 189
sMRI scans) who developed from CN to AD during follow-
up as an independent dataset to test the performance of
the prediction model.

The sMRI data were acquired using 3D T1-weighted
(T1W) magnetization prepared rapid acquisition gradient-
echo (MPRAGE) imaging sequences. The detailed acquisi-
tion information was available at the website:
http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/.
Besides, several cognitive measurements were included
in this study: the Alzheimer’s Disease Assessment Scale
Cognitive-13 (ADAS13) and CDRSB were recorded as the
measures of dementia severity (O’Bryant et al. 2008; Yagi
et al. 2019); the Mini-Mental State Examination (MMSE)
was recorded as a measure of cognitive impairment
(Folstein et al. 1975); the Rey Auditory Verbal Learning
Test immediate recall (RAVLTimm) was recorded as a
measure of memory function (Moradi et al. 2017).

Data preprocessing and gray matter volume
quantification
All T1W sMRI data were processed using a longitudi-
nal pipeline based on CAT12 tool (http://www.neuro.
uni-jena.de/cat12-html/cat.html) and SPM12 (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/). For each
subject, the sMRI data of all runs were firstly rigidly
co-registered with the baseline images and averaged to
generate the subject-specific average T1W images. Then
the average T1W images were segmented and normal-
ized into Montreal Neurological Institute (MNI) space
using DARTEL algorithm (Ashburner 2007). For each run,
the rigidly aligned T1W images were segmented into
different tissue components, such as the gray matter
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Fig. 1. A schematic summary of the study design. Abbreviations: AAL = Automated Anatomical Labeling; ADAS13 = Alzheimer’s Disease Assessment Scale
Cognitive-13; ADNI = Alzheimer’s Disease Neuroimaging Initiative; aMCI_C = amnestic mild cognitive impairment converters; APOE = apolipoprotein E;
AUC = area under curve of receiver operating characteristic curve; CDRSB = Clinical Dementia Rating Scale Sum of Boxes; CN = cognitively normal;
GMV = gray matter volume; MMSE = Mini-Mental State Examination; RAVLT = Rey Auditory Verbal Learning Test; sMRI = structural magnetic resonance
imaging.

(GM), white matter (WM), and cerebrospinal fluid (CSF).
Then the GM component of each run was warped into
the MNI space using the subject’s deformation field
map generated at the prior step and modulated by the
Jacobian determinants, termed absolute gray matter
volume (GMV).

The Automated Anatomical Labeling (AAL) atlas and
Automated Anatomical Labeling 3 (AAL3) atlas were used
to parcel the whole cerebrum into 90 and 140 cortical and
subcortical regions, respectively; and the average GMV of
each cerebral region of each subject scan was extracted
(Tzourio-Mazoyer et al. 2002; Rolls et al. 2020). Finally,
the intracranial volume (ICV) (sum of GM, WM, and
CSF volumes) was also calculated for further statistics.
In contrast to the old version of the AAL atlas, AAL3
had finer-grained subdivisions for the anterior cingulate
cortex, orbitofrontal cortex, thalamus, and basal ganglia.
The results of the two atlases were cross-validated in the
following statistics.

Statistical models for trajectory mapping
A LME model was introduced to delineate the longi-
tudinal atrophic trajectories of the cerebrum during
aMCI progressed into AD. LME model allows for mod-
eling both fixed and random effects, and it adapts to
irregular follow-up intervals with missing time points
(Bernal-Rusiel et al. 2013). In addition, we added the
linear and quadratic terms to model the nonlinear
atrophic trajectories of the cerebral subregions during
AD conversion. Subject-specific random intercepts and
slopes terms were considered as random effects to
account for the between-subject variance. Site-specific
random intercepts term was also modeled to remove
the between-site heterogeneity. Besides, ICV, sex, and
education were modeled as fixed nuisance covariates.
We estimated the effects of linear and quadratic terms
based on a joint (or multiple) hypothesis testing using the
F-Statistic (Blackwell 2008; Griffiths and Hill 2021). Joint
hypothesis testing incorporates multiple null hypotheses
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into a single test (for example, we hypothesized that
all the linear terms and quadratic interaction terms
are zero), which will return an F-statistic and P-value
for this joint null hypothesis. The LME was performed
using MATLAB 2019 (https://www.mathworks.com/). In
the present study, several LME models were constructed
according to different purposes as described in the
following:

Model 1: Effect of group on the cerebral atrophic
trajectories with aging

To identify cerebral subregions whose atrophic trajec-
tories were specific for aMCI_C progression rather than
normal aging, we first modeled the atrophic trajectories
during aging for aMCI_C, CN, and their interactions on
the atrophic process. Then, we estimated the total linear
and quadratic interaction effects between the age and
group based on the joint hypothesis testing using the
F-Statistic. We also separately estimated the linear and
quadratic age main effects for aMCI_C and CN using
joint hypothesis testing. A Bonferroni correction method
was used to correct multiple comparisons (P < 0.05/90,
Bonferroni correction). The model was described in
equation (1):

GMV = β1 CN + β2
(
CN ∗ Age

) + β3

(
CN ∗ Age2

)

+β4 aMCI_C + β5
(
aMCI_C ∗ Age

)

+β6

(
aMCI_C ∗ Age2

)
+ β7 ICV

+β8Sex + β9 Edu + (
1 + Age|Subject

) + (
1|Site

)
(1)

Age and Age2 represent the linear and quadratic terms
of age, respectively.

Model 2: Effect of APOE on the cerebral atrophic
trajectories with aging in aMCI_C

This model evaluated the influence of APOE poly-
morphism on the atrophic trajectories with aging for
aMCI_C patients in brain regions identified by Model
1. This model was similar to Model 1, except that
APOE was used to substitute the group factor (joint
hypothesis testing, P < 0.05/68, Bonferroni correction,
equation (2)).

GMV = β1 carrier + β2
(
carrier ∗ Age

)

+β3

(
carrier ∗ Age2

)
+ β4 noncarrier

+β5
(
noncarrier ∗ Age

) + β6

(
noncarrier ∗ Age2

)

+β7 ICV + β8 Sex + β9 Edu + (
1 + Age|Subject

)

+ (
1|Site

)
(2)

Age and Age2 represent the linear and quadratic terms
of age, respectively.

Model 3: Atrophic trajectories from aMCI to AD

This model portrayed the quadratic atrophic trajectories
of all identified conversion-specific cerebral subregions
as a function of time-to-conversion in aMCI_C patients.
Time-to-conversion (or termed Time in the equations)
is defined as the duration (months) between the time
point of a certain sMRI scan and the time point at AD
conversion with a negative sign representing time before
conversion and positive representing time after conver-
sion. The time point at AD conversion is defined as the
first date that an aMCI_C patient reached CDRSB scores
equal to or higher than 4.5. This model included the
linear and quadratic fixed effects of time-to-conversion,
and age and age2 were considered as nuisance covariates
to control the influence of age on the estimation of the
atrophic trajectory (joint hypothesis testing, P < 0.05/68,
Bonferroni correction, equation (3)).

GMV = β1 + β2 Time + β3 Time2 + β4 ICV

+β5 Sex + β6 Edu + β7 Age + β8 Age2

+ (
1 + Time|Subject

) + (
1|Site

)
(3)

Time and Time2 represent the linear and quadratic
terms of time to AD conversion.

Model 4: Effect of APOE on the atrophic trajectories from
aMCI to AD

This model evaluated the influence of APOE polymor-
phism on the quadratic atrophic trajectories from aMCI
to AD. In the first model, we sub-grouped the aMCI_C
patients into APOE ε4 carriers versus noncarriers; then
we estimated the total linear and quadratic interaction
effects between the APOE ε4 carry status and time-to-
conversion (joint hypothesis testing, P < 0.05/68, Bonfer-
roni correction, equation (4)):

GMV = β1 carrier + β2
(
carrier ∗ Time

)

+β3

(
carrier ∗ Time2

)
+ β4 noncarrier

+β5
(
noncarrier ∗ Time

) + β6

(
noncarrier ∗ Time2

)

+β7 ICV + β8 Sex + β9 Edu + β10 Age + β11 Age2

+ (
1 + Time|Subject

) + (
1|Site

)
(4)

In the second model, we additionally sub-grouped
the aMCI_C patients into five groups with diverse APOE
genotypes (ε4/ε4, ε3/ε4, ε2/ε4, ε3/ε3, and ε2/ε3); then we
remodeled the interaction effects between the APOE
genotypes and time-to-conversion (joint hypothesis
testing, P < 0.05/68, Bonferroni correction, equation (5)):

GMV = β1 APOEgenotypes + β2 (APOEgenotypes

∗Time) + β3

(
APOEgenotypes ∗ Time2

)
+ β4 ICV

+β5 Sex + β6 Edu + β7 Age + β8 Age2

+ (
1 + Time|Subject

) + (
1|Site

)
(5)
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Model 5: Effect of age on the atrophic trajectories from
aMCI to AD

This model evaluated the influence of age on the
quadratic atrophic trajectories from aMCI to AD. We
estimated the total linear and quadratic interaction
effects between the age and time-to-conversion (joint
hypothesis testing, P < 0.05/68, Bonferroni correction,
equation (6)). Moreover, the annual atrophic rate was
calculated for patients with age at 60 and 80 years,
respectively.

GMV = β1 + β2 Age + β3 Time + β4 Age2 + β5 Time2

+β6
(
Age ∗ Time

) + β7

(
Age ∗ Time2

)

+β8

(
Age2 ∗ Time

)
+ β9

(
Age2 ∗ Time2

)
+ β10 ICV

+β11 Sex + β12 Edu + (
1 + Age|Subject

)

+ (
1 + Time|Subject

) + (
1|Site

)
(6)

Model 6: Interaction of age and APOE on the atrophic
trajectories from aMCI to AD

This model evaluated the interaction between age and
APOE on the quadratic atrophic trajectories from aMCI
to AD. The total linear and quadratic interaction effects
of the three factors (age, APOE and time-to-conversion)
were estimated (joint hypothesis testing, P < 0.05/68, Bon-
ferroni correction, equation (7)). In addition, the annual
atrophic rate was calculated for different age subgroups
of APOE carriers and noncarriers, respectively.

GMV = β1 + β2 Age + β3 Time + β4 Age2 + β5 Time2

+β6 APOE + β7
(
Age ∗ Time ∗ APOE

)

+β8

(
Age ∗ Time2 ∗ APOE

)
+ β9

(
Age2 ∗ Time ∗ APOE

)

+β10

(
Age2 ∗ Time2 ∗ APOE

)
+ β11 ICV + β12 Sex

+β13 Edu + (
1 + Age|Subject

) + (
1 + Time|Subject

)

+ (
1|Site

)
(7)

Model 7: Cognitive decline trajectories from aMCI to AD

This model evaluated the quadratic cognitive decline tra-
jectories as a function of time-to-conversion in aMCI_C
and had the same independent variables with equation
(3) (joint hypothesis testing, P < 0.05/4, Bonferroni cor-
rection). Cognitive measures included ADAS13, CDRSB,
MMSE, RAVLTimm (equation (8)).

Cognitions = β1 + β2 Time + β3 Time2 + β4 Sex

+β5 Edu + β6 Age + β7 Age2 + (
1 + Time|Subject

)

+ (
1|Site

)
(8)

Model 8: Correlation between cognitive decline and GMV
atrophy

This model evaluated the quadratic association between
GMV atrophy and cognitive decline. This model included
the linear and quadratic terms of cognition as fixed
effects (joint hypothesis testing, P < 0.05/68, Bonferroni
correction). An example of MMSE was shown in equation
(9).

GMV = β1 + β2 MMSE + β3 MMSE2 + β4 ICV + β5 Sex

+β6 Edu + (
1 + MMSE |Subject

) + (
1|Site

)
(9)

In addition, the annual atrophic rate was calculated
within one year, five years, and ten years before conver-
sion using equation (10):

Annual atrophic rate = (GMVn − GMV0)

n ∗ GMVn
(10)

In which n represents the number of years before AD
conversion.

Statistical analyses for demographic data
The demographic data were analyzed using the Statisti-
cal Package for the Social Sciences version 26.0 (SPSS).
A one-way analysis of variance (ANOVA) (three groups
or higher) or two-sample t-test (two groups) was used
to compare differences in continuous variables such as
age, educational years, follow-up times and duration,
cognitive scores between the CN, aMCI_C and aMCI_S
groups (P < 0.05). In addition, the chi-square test was
used to compare differences in categorical variables such
as gender and APOE ε4 status (P < 0.05).

Predicting AD conversion during follow up
A Cox proportional hazards regression model was intro-
duced to test the potential of identified AD conversion-
related volumetric features in predicting the time to
dementia conversion. All the involved aMCI subjects
(including aMCI_C and aMCI_S) were included in the
survival analysis. We excluded the sMRI follow-up scans
after AD conversion for aMCI_C. The time when aMCI_C
patients first converted into AD was regarded as the
end event in the survival model. The survival time
was defined as years from the first sMRI scan to AD
conversion (aMCI_C) or follow-up censoring (aMCI_C
or aMCI_S). We first fitted a Cox proportional hazards
regression model with the GMV of the 68 cerebral
subregions as features and end event (conversion or not
conversion) at certain follow-up time points as labels.
In addition, to evaluate the predictive value of each of
the 68 cerebral subregions, we additionally fitted the Cox
proportional hazards regression models with the GMV
of a single cerebral region as the feature one-by-one.
To evaluate how well these features could discriminate
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between converters and non-converters, we calculated
time-dependent areas under the receiver operating
characteristic (ROC) curve (AUC) at each follow-up and
the overall average AUC across all follow-ups. The GMV
was adjusted for gender, educational years, and site
effects using linear regression before survival analysis.

Subject-wise cross-validation was adopted during
model training to avoid overestimating the predictive
ability (Cudeck and Browne 1983). First, the total aMCI
patients were randomly separated into five subsets
with approximately equal sample sizes, in which four
subsets were used for training, and the remaining one
subset was used to test the performance. Considering the
randomness of subgrouping, we randomly shuffled the
aMCI patients five times and averaged the performances
of the 5 times as the final outcomes. Besides, an inde-
pendent testing dataset including 24 qualified subjects
who developed from CN to AD during follow-up was also
enrolled to test the performance of the prediction model.
A permutation method was used to test the significance
of the predictive performance. Specifically, we randomly
shuffled the end event (conversion or not conversion)
of the training dataset and trained a pseudo-survival
model, which was then used to predict the event of the
testing dataset to obtain the null AUC. The above step
was repeated 1000 times to obtain a null distribution for
AUCs. The significance of performance was determined
by judging how likely the actual AUC falls into the null
distribution (P < 0.05). The survival analysis was carried
out using the scikit-survival package (version 0.15.1) of
Python.

Result
Demographic findings
The demographic characteristics and cognitive perfor-
mance of the study population are presented in Table 1.
One-way ANOVA demonstrated no statistical difference
in age at the first sMRI scan (F = 0.086, P = 0.918) and
follow-up duration (F = 2.388, P = 0.093) among the CN,
aMCI_C, and aMCI_S. Post hoc analysis demonstrated
no statistical difference in gender, education, and the
number of sMRI scans per subject between aMCI_C and
aMCI_S patients (P > 0.05). The aMCI_C patients had a
higher ratio of males (Chi-square test: χ2 = 4.64, P = 0.031),
lower education (two-sample t-test: t = 2.64, P = 0.009),
a higher ratio of APOE ε4 carriers (Chi-square test:
χ2 = 70.64, P < 0.001), and worse cognitive functions at the
first sMRI scan (two-sample t-test: all P < 0.001) than the
CN. Additionally, within the aMCI_C patients, 183 APOE
ε4 carriers (containing at least one ε4 allele copy) and
93 noncarriers were identified (Supplementary Table 1),
including five APOE genotypes: ε4/ε4 (46 cases), ε3/ε4
(129 cases), ε2/ε4 (8 cases), ε3/ε3 (84 cases), and ε2/ε3
genotypes (9 cases) (Supplementary Table 2). All aMCI_C
patients had 1165 sMRI scans before AD conversion,
of which 235 cases had 544 sMRI scans during the
dementia stage (Supplementary Table 3). Two-sample

t-test found that APOE ε4 carriers were younger than
the noncarriers (t = −3.05, P = 0.003), and RAVLTimm was
worse for APOE ε4 carriers than noncarriers (t = −2.31,
P = 0.022) (Supplementary Table 1).

Cerebral atrophic trajectories as a function of age
in CN and aMCI_C groups
Among the 90 cerebral subregions in AAL atlas, LME
identified 68 regions whose quadratic atrophic trajec-
tories with aging in aMCI_C were faster than the CN,
including the bilateral hippocampus, parahippocampal
gyrus (PHG), superior temporal pole (STP), insula, and
so on, indicating that these 68 subregions were spe-
cific indicators for aMCI-to-AD conversion (joint hypoth-
esis testing, P < 0.05/90, Fig. 2A-D). Sixty of the 68 cere-
bral subregions could be verified by AAL3 atlas using
a strict threshold (P < 0.05/90); the remaining 8 subre-
gions can be validated by AAL3 atlas using a looser
threshold (P values: from 5.59e−4 to 5.08e−2). Moreover,
AAL3 atlas additionally identified four subregions whose
atrophic trajectories with aging in aMCI_C were faster
than the CN, including the left olfactory cortex, left cal-
carine fissure, right superior occipital gyrus, and right
supramarginal gyrus (P < 0.05/90), and 3 of them can
be validated by AAL atlas using a looser threshold (P
values: from 2.13e−3 to 5.26e−3) except for the left olfac-
tory cortex (P = 0.193) (Fig. 3, Supplementary Table 4). An
example of the atrophic trajectories as a function of
the age of the bilateral hippocampus for the aMCI_C
and CN was shown in Fig. 2E (left: F = 105.89, P = 3.80e−45,
right: F = 116.01, P = 3.09e−49). In the aMCI_C, AAL atlas
further identified that APOE ε4 carriers had faster atro-
phy in 45 of the 68 cerebral subregions than the non-
carriers, of which 42 cerebral regions can be verified by
AAL3 atlas (Supplementary Fig. 2, Supplementary Fig. 3,
and Supplementary Table 5, P < 0.05/68).

Cerebral atrophic trajectories from aMCI to AD
Based on the identified 68 AAL cerebral regions that
showed faster atrophy during aging in aMCI_C, we further
fitted the quadratic atrophic trajectories of these regions
as a function of time-to-conversion. We found all of
these 68 cerebral regions showed quadratic atrophy as a
function of time-to-conversion, especially in the bilateral
STP, caudate, hippocampus, and pallidum, and all the
positive findings revealed by the AAL atlas could be veri-
fied by AAL3 atlas (Fig. 4A and B, Supplementary Fig. 4
and Supplementary Table 6, joint hypothesis testing,
P < 0.05/68). One example of the bilateral hippocampal
atrophic trajectories during AD conversion was shown
in Fig. 4C (left: F = 167.48, P = 4.02e−67, right: F = 140.76,
P = 2.69e−57). The annual atrophic rates of these regions
were highest within one year before conversion, followed
by five years, and the lowest for ten years, suggesting
accelerated atrophy during conversion from aMCI to AD.
The top 5 highest annual atrophic rate was shown in
the right pallidum (11.89%), left pallidum (8.96%), left
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Table 1. Main demographic and clinical characteristics of the participants.

Characteristic CN aMCI_C aMCI_S Statistics P values CN vs.
aMCI_C P
values

aMCI_C vs.
aMCI_S P
values

Validation
(CN to AD)

Number of subjects 232 276 279 – – – – 24
Total no. of sMRI
scans

1265 1709 1669 – – – – 189

Age at first sMRI scan
(years)

73.87 ± 6.12 74.12 ± 6.80 73.99 ± 7.56 F = 0.086 0.918 – – 75.68 ± 4.39

Gender
(males/females)

114/118 162/114 164/115 χ2 = 6.118 0.047 0.031 0.984 8/16

Education (years) 16.66 ± 2.52 16.04 ± 2.73 15.79 ± 2.92 F = 6.584 0.001 0.009 0.303 15.71 ± 2.68
APOE ε4
(carriers/noncarriers)a

67/165 183/93 120/159 χ2 = 73.652 <0.001 <0.001 <0.001 10/14

No. sMRI scans per
subject

5.45 ± 2.43 6.19 ± 2.25 5.98 ± 1.74 F = 7.844 <0.001 <0.001 0.219 7.88 ± 2.67

Follow-up duration
(years)

4.20 ± 2.98 3.86 ± 2.32 3.72 ± 2.24 F = 2.388 0.093 – – 7.08 ± 3.25

First sMRI scan
ADAS13 9.32 ± 4.55 20.91 ± 6.74 15.09 ± 5.25 F = 260.22 <0.001 <0.001 <0.001 9.74 ± 3.98
CDRSB 0.00 ± 0.00 1.97 ± 0.94 1.26 ± 0.63 F = 548.72 <0.001 <0.001 <0.001 0.00 ± 0.00
MMSE 29.06 ± 1.17 26.91 ± 1.87 27.81 ± 1.79 F = 103.31 <0.001 <0.001 <0.001 29.42 ± 0.95
RAVLT immediate 45.01 ± 10.10 29.28 ± 8.71 35.07 ± 9.88 F = 168.89 <0.001 <0.001 <0.001 43.00 ± 9.43

aAPOE ε4 carriers indicate subjects having one or two copies of ε4 alleles. Continuous variables are shown as “mean ± standard deviation.” P values in bold
indicate significant differences between groups.

STP (4.25%), left hippocampus (4.18%), and right caudate
(4.14%) within one year before AD conversion (Fig. 4D).

Effects of APOE and aging on the cerebral
atrophic trajectories from aMCI to AD
LME fitting based on the AAL atlas further identi-
fied eight cerebral regions whose atrophic trajecto-
ries following time-to-conversion were regulated by
APOE mutation, including the bilateral caudate and
hippocampus, right insula and olfactory gyrus, and
left Heschel gyrus and superior temporal gyrus (STG)
(Fig. 5A, joint hypothesis testing, P < 0.05/68). Six of the
8 cerebral subregions can be verified by AAL3 atlas
using a strict threshold (P < 0.05/68), and the other two
brain regions can be validated by AAL3 atlas using a
looser threshold (left Heschel gyrus: P = 4.82e−3, left STG:
P = 2.08e−2). Besides, the left middle temporal gyrus was
additionally identified by the AAL3 atlas (P < 0.05/68)
(Supplementary Fig. 5, Supplementary Table 7). Post hoc
analysis demonstrated that APOE ε4 carriers suffered
faster accelerated quadratic atrophy than the noncarri-
ers in these areas (Fig. 5B and C, P < 0.05/8). The atrophic
trajectories of the hippocampus from aMCI to AD for the
ε4 carrier and noncarrier patients were shown in Fig. 5D
(left: F = 8.58, P = 1.97e−4, right: F = 11.91, P = 7.34e−6). The
further inter-genotype comparison demonstrated that
APOE ε4 carriers (ε4/ε4, ε3/ε4, and ε2/ε4) encountered
the fastest accelerated quadratic atrophy, followed by
ε3 homozygous, and ε2/ε3 carriers slowed down the
atrophic trajectories (Fig. 5D, Supplementary Fig. 6).

In addition, the AAL atlas identified a significant
regulation of aging on the atrophic trajectories in
32 cerebral regions following time to AD conversion
(Fig. 6A and B, joint hypothesis testing, P < 0.05/68),

especially for bilateral STP, STG, and right hippocam-
pus, in which 28 subregions can be verified by AAL3
atlas using a strict threshold (P < 0.05/68), and the
remaining 4 can be verified using a loose threshold
(P values from 9.48e−4 to 7.07e−3). Two cerebral sub-
regions (right superior frontal gyrus and left Rolandic
operculum) were additionally identified by the AAL3
atlas (Supplementary Fig. 7, Supplementary Table 8,
P < 0.05/68). For example, younger patients had faster
accelerated atrophy in the bilateral hippocampus than
those older (Fig. 6C, left: F = 8.25, P = 1.38e−6, right:
F = 12.55, P = 4.62e−10). Besides, the annual atrophic rates
of younger patients appeared more rapid than older
patients, and the greatest atrophic rate was observed
within one year before conversion, with about 5.55% in
the left PCC at 60 years old, while only 2.47% at 80 years
old (Fig. 6D).

Finally, a complex interaction between APOE gene
risk and aging on the atrophic trajectories follow-
ing AD conversion was found in 15 cerebral regions
by AAL atlas (Fig. 7A and B, joint hypothesis testing,
P < 0.05/68), in which 10 subregions can be verified
by AAL3 atlas using a strict threshold (P < 0.05/68),
and the remaining 5 can be verified using a loose
threshold (P values from 1.21e−3 to 9.70e−3). Besides, the
right lingual gyrus was additionally identified by AAL3
atlas (Supplementary Fig. 8, Supplementary Table 9,
P < 0.05/68). Post hoc analysis demonstrated the reg-
ulation effects of aging on the atrophic trajectories of
these areas following time to AD conversion were only
evident in APOE ε4 carriers while not in noncarriers
(Fig. 7C and D and Supplementary Fig. 9, P < 0.05/15).
The atrophic trajectories of the hippocampus at different
ages for the APOE ε4 carriers and noncarriers were
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Fig. 2. Cerebral longitudinal atrophic trajectories following aging in CN and aMCI_C groups. (A) The ordered -log10(P) values of cerebral regions with
significantly accelerated cerebral atrophy following age in aMCI_C relative to CN. A linear mixed-effects model was used to estimate the quadratic
cerebral atrophic differences between the groups (P < 0.05/90, Bonferroni correction). Asterisk (∗) indicates cerebral regions that the AAL3 atlas can
validate. (B) The cortical maps of the group differences in quadratic cerebral atrophy as a function of aging. Color bar represents the -log10(P) values.
Dark blue represents non-significant. (C) and (D) represents -log10(P) values of the quadratic cerebral atrophy as a function of aging in CN and aMCI_C,
respectively. (E) Age-related atrophy changes in the hippocampus. Solid red (CN) and blue (aMCI_C) lines represent the fitted GMV change as a function of
aging. The full names of the brain regions are shown in Supplementary Table 4. Abbreviations: aMCI_C = amnestic mild cognitive impairment converters;
CN = cognitively normal; GMV = gray matter volume; L = left; R = right; y = year.

presented in Fig. 7E (left: F = 5.42, P = 2.44e−4, right:
F = 7.27, P = 8.35e−6).

The trajectory of cognitive changes from aMCI to
AD and associations with cerebral atrophy
Quadratic LME model further identified significantly
accelerated cognitive decline following the development
of AD (joint hypothesis testing, ADAS13: F = 289.21,
P = 1.12e−107; CDRSB: F = 584.92, P = 4.60e−191; MMSE:
F = 264.30, P = 7.68e−100; RAVLTimm: F = 142.79, P = 1.12e−57).
The cognitive decline became more severe when the
onset time was closer and worsen after dementia
(Fig. 8A). Finally, based on the AAL atlas, worse cognitive
impairment was correlated with greater atrophy of
the bilateral hippocampus (Fig. 8B) and other cerebral
regions such as the STP and insula, which could be

verified by AAL3 atlas (Supplementary Table 10, P < 0.05,
Bonferroni correction).

Performance of AD conversion prediction
Using the Cox proportional hazards regression model
based on 68 cerebral subregions GMV features, the per-
mutation test demonstrated significantly higher time-
dependent AUCs at each follow-up point (from 0.688 to
0.773) and average AUC (0.714) compared to the null
AUCs distribution for the aMCI testing dataset (P < 0.001)
(Fig. 9A). Furthermore, on an independent testing dataset
with 24 participants who developed from CN to AD dur-
ing follow-up, the time-dependent AUCs at each follow-
up point (from 0.800 to 0.880) and average AUC (0.814)
were also significantly higher than the null distribu-
tion (permutation test, P < 0.001) (Fig. 9B), indicating that
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Fig. 3. The cerebral subregions with faster quadratic atrophy as a function of aging in aMCI_C groups compared to CN identified by AAL and AAL3
atlas. (A) The identified 68 cerebral regions by AAL atlas. (B) The identified 64 cerebral regions by AAL3 atlas. (C) Overlaps of the identified cerebral
regions between AAL and AAL3 atlas (P < 0.05/90, Bonferroni correction). Abbreviations: aMCI = amnestic mild cognitive impairment; AAL = Automated
Anatomical Labeling; CN = cognitively normal; L = left; R = right.

these AD conversion-related cerebral atrophic features
could reliably predict the time to AD conversion.

We further evaluate the predictive value of the Cox
proportional hazards regression model based on a single
cerebral GMV feature. Permutation test identified 62
out of the 68 cerebral subregions whose GMV feature
could significantly predict the time to AD conversion
(P < 0.001). The cerebral subregions with the top 5 average
AUC included the left amygdala (average AUC = 0.745),
left middle temporal gyrus (average AUC = 0.736), right
inferior temporal gyrus (average AUC = 0.730), left
inferior temporal gyrus (average AUC = 0.728), and
left hippocampus (average AUC = 0.726) (Fig. 9C and
Supplementary Table 11).

Discussion
In this study, a major aim was to map the cerebral longi-
tudinal atrophic trajectories during the conversion from
early aMCI to AD. Linear mixed-effects model unraveled
that most cerebral regions suffered quadratically accel-
erated atrophy during the progression from early aMCI
to AD, which can be verified in both AAL and AAL3
atlas. Furthermore, APOE ε4 carriers with younger age
demonstrated faster atrophic rates than the noncarriers
with older age. Finally, the Cox proportional hazards
regression model using the GMV of the identified cerebral
regions could effectively predict the time to dementia
conversion within 10 years. Our study demonstrated that

cerebral atrophic trajectory mapping helps a compre-
hensive understanding of AD development and offers
potential biomarkers for early predicting AD conversion.

Early studies had reported progressively whole-brain
shrinkage (Jack Jr et al. 2008), MTL atrophy (Younes et al.
2014; Lindemer et al. 2015; Pegueroles et al. 2017; Younes
et al. 2019), white matter degeneration (Lindemer et al.
2015), and ventricular expansion (Jack Jr et al. 2008) when
individuals progressed from aMCI to AD. Our findings
agreed with these findings. Moreover, except for the MTL
atrophy, we unraveled that most other cerebral regions
suffered obvious GMV loss during the AD conversion,
especially areas outside the MTL, such as the superior
temporal pole and gyrus, insula, striatum, and cingulate
cortex. These cerebral regions are of particular interest
because they are affected very early in AD progression.
Our findings were in line with early neuropathological
studies showing that neurofibrillary degeneration grad-
ually spreads from the MTL to the anterior temporal
cortex, polymodal association areas (prefrontal, parietal
inferior, temporal superior), and finally to all neocorti-
cal areas in aging and Alzheimer’s disease (Delacourte
et al. 1999). A study also reported that fibrillar amyloid-β
plaque deposition was first observed in the striatum of
AD at 17 years before symptom onset (Rodriguez-Vieitez
et al. 2016).

In comparison with early studies focusing on the
linear changes of GMV over time-to-AD conversion (Lo
et al. 2011; Corriveau-Lecavalier et al. 2019), our models
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Fig. 4. Cerebral longitudinal atrophic trajectories from aMCI to AD. (A) The ordered -log10(P) values of cerebral regions with significantly accelerated
cerebral atrophy from aMCI to AD. A linear mixed-effects model was used to estimate the quadratic cerebral atrophic trajectories as a function of
time to AD conversion (P < 0.05/68, Bonferroni correction). Asterisk (∗) indicates cerebral regions that the AAL3 atlas can validate. (B) The quadratic
cerebral atrophic maps as a function of time to AD conversion. The color bar represents the -log10(P) values. Dark blue represents non-significant. (C)
The atrophic trajectories of the hippocampus during the conversion. Solid blue lines represent the fitted hippocampal volume as a function of time to
AD conversion. (D) The maps of average annual atrophic rate within 1 year, 5, and 10 years prior to AD conversion. The full names of the brain regions
are shown in Supplementary Table 6. Abbreviations: L = left; m = month; R = right.

further emphasized the quadratic GMV atrophy of
these regions: slightly atrophy during the early aMCI,
accelerated atrophy when closer to AD conversion,
and acceleration after conversion. We found that
the top 5 highest annual atrophic rate was shown
in the right pallidum (11.89%), left pallidum (8.96%),
left superior temporal pole (4.25%), left hippocampus
(4.18%), and right caudate (4.14%) within one year before
AD conversion. These findings were in line with previous
reports of progressive atrophy of the MTL (Younes et al.
2014; Bilgel and Jedynak 2019) and superior temporal
cortex (Risacher et al. 2010; Phillips et al. 2019; Contador
et al. 2021) during the progression of AD. However, there
were inconsistent reports on the atrophy of subcortical
structures in AD, especially for the pallidum. Several

neuroimaging studies had reported unchanged pallidus
volume in the AD (Yi et al. 2016) or aMCI (Roh et al. 2011;
Benzinger et al. 2013). In contrast, mild atrophy in striatal
structures (including the caudate, pallidum, and puta-
men) was also detected in MCI and AD (Tang et al. 2014).
Furthermore, increased amyloid deposition has been
reported in these striatal structures in pre-symptomatic
autosomal dominant AD mutation carriers (Benzinger
et al. 2013), abnormal insula-pallidus connectivity was
reported in early-stage AD (Chen et al. 2013), and the
GMV of the pallidum was associated with the short-term
memory in MCI patients (Valdés Hernández et al. 2020).
These studies supported our findings of accelerated
atrophy of the striatal structures (pallidus, caudate, and
putamen) during aMCI progressed into AD. It should
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Fig. 5. Effects of APOE ε4 on the cerebral longitudinal atrophic trajectories from aMCI to AD. (A) The cortical maps of difference in cerebral longitudinal
atrophic trajectories between APOE ε4 carriers and noncarriers. A linear mixed-effects model was used to estimate the effect of APOE polymorphism
on the quadratic cerebral atrophic trajectories as a function of time to AD conversion (Fig.< 0.05/68, Bonferroni correction). The color bar represents
the -log10(P) values. Dark blue represents non-significant. Panels (B) and (C) represent the quadratic cerebral atrophic maps as a function of time to AD
conversion in APOE ε4 carriers and noncarriers, respectively. (D) The atrophic trajectories of the hippocampus during the conversion in APOE ε4 carriers
and noncarriers (left panels) and in five APOE genotypes (right panels). Abbreviations: APOE = apolipoprotein E; L = left; m = month; R = right.

be noted that the identified annual atrophic rate of
bilateral pallidus was extraordinarily double higher
than that of hippocampus within one year before AD
conversion. A possible reason is that the segmentation
of gray matter near the pallidus is not quite accurate
based on the 3D T1W MPRAGE sMRI images because

this sequence is not good enough to visualize the
contours of some subcortical structures, especially for
the pallidum and thalamus (Visser et al. 2016). It can
also partially interpret the negative findings for the
thalamic subdivisions defined by AAL3. Moreover, we
also validated that the cerebral atrophic trajectories were
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Fig. 6. Effects of age on the cerebral longitudinal atrophic trajectories from aMCI to AD. Panels (A) and (B) represent the cerebral regions with significant
Age×Time interaction effects on cerebral atrophy. A linear mixed-effects model was used to estimate the quadratic interaction between age and time
to AD conversion on GMV (P < 0.05/68, Bonferroni correction). Asterisk (∗) indicates cerebral regions that the AAL3 atlas can validate. (C) The quadratic
atrophic trajectories of the hippocampus as a function of time to AD conversion at an interval of five years between 60 and 80 age. (D) The maps of
average annual atrophic rate within 1 year, 5 years, and 10 years prior to AD conversion at age 60 (left panel) and 80 (right panel) years. The full names
of the brain regions are shown in Supplementary Table 8. Abbreviations: GMV = gray matter volume; L = left; R = right; y = year.

closely associated with accelerated cognitive decline
during the conversion from aMCI to AD (Dicks et al.
2019). Thus, the unraveled cerebral atrophic trajectories
from aMCI to AD in the present study provides potential
neuroimaging biomarkers for monitoring and predicting
AD progression and highlights the importance of early
intervention before severe atrophy (Whitwell 2010;
Counts et al. 2017).

We also found that APOE and aging selectively modu-
lated the atrophic trajectories of specific cerebral regions.
First, we found that the ε4 alleles could speed up the
atrophy during conversion from aMCI to AD and during
aging progress in several brain regions such as caudate,
hippocampus and insula. Furthermore, we also found
that APOE ε4 carriers (ε4/ε4, ε3/ε4 and ε2/ε4) encountered
the fastest accelerated quadratic atrophy, followed by ε3
homozygous, and slowest for ε2/ε3 carriers in the hip-
pocampus, superior temporal gyrus, insula and caudate.
These findings were consistent with earlier studies show-
ing more severe atrophy of multiple brain regions in APOE
ε4 carriers of AD (Hashimoto et al. 2001; Spampinato
et al. 2011), progressive aMCI patients (Spampinato et al.
2011; Susanto et al. 2015), and even cognitive-normal
adults (Taylor et al. 2014; Nao et al. 2017) than the non-
carriers. A recent study reported that APOE ε4 carriers
demonstrated faster atrophic rates of the whole brain,

hippocampus, entorhinal cortex and middle temporal
gyrus after transitioning to dementia but not during
aMCI (Chen et al. 2021). In contrast, we further unraveled
that the APOE regulation effects occur before AD conver-
sion, supported by early studies showing the impact of
APOE ε4 on the brain atrophy of aMCI (Spampinato et al.
2011; Susanto et al. 2015), and cognitive-normal adults
(Taylor et al. 2014; Nao et al. 2017). Thus, our findings
further verify the evidence that APOE ε4 could accelerate
cerebral atrophy and AD progression, while ε2 genotype
could slow down the cerebral atrophy and AD conversion
(Salvadó et al. 2021).

On the influence of age on atrophic progression, we
found younger patients atrophied faster than older
patients during AD conversion in 32 cerebral regions,
particularly in STP, STG, and hippocampus. The annual
atrophic rates of these regions decreased with aging and
increased with close to AD conversion, indicating that
patients with younger age and closer to AD onset demon-
strate a higher atrophic rate of cerebral regions. These
results were consistent with prior findings showing more
severe brain atrophy in the MTL for younger aMCI and
AD patients (Fan et al. 2012; Fiford et al. 2018), and
more rapid cortical thinning in early-onset AD patients
than late-onset AD (Cho et al. 2013). The difference with
previous studies was that we evaluated the interaction
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Fig. 7. Effects of APOE ε4 and age on the cerebral longitudinal atrophic trajectories from aMCI to AD. Panels (A) and (B) represent the cerebral regions with
significant APOE×Age×Time interaction effects on the cerebral atrophy, respectively. A linear mixed-effects model was used to estimate the quadratic
interaction between APOE, age, and time to AD conversion on GMV (P < 0.05/68, Bonferroni correction). Asterisk (∗) indicates cerebral regions that the
AAL3 atlas can validate. (C) and (D) represent the effect of aging on the quadratic cerebral atrophic trajectories as a function of time to AD conversion in
APOE ε4 carriers and noncarriers, respectively. (E) The effects of APOE polymorphism and aging on the quadratic atrophic trajectories of the hippocampus
as a function of time to AD conversion. The full names of the brain regions are shown in Supplementary Table 9. Abbreviations: APOE = apolipoprotein
E; GMV = gray matter volume; L = left; R = right; y = year.

between aging and time to AD onset on the cerebral
atrophy, which provided more direct evidence about how
aging regulates the progress of AD conversion.

Furthermore, we examined whether aging regulation
on cerebral atrophic trajectories from aMCI to AD is still
affected by APOE risk. Our results showed that aging
exerted a strong region-specific regulation on cerebral
atrophy during AD conversion only for APOE ε4 carriers
rather than the noncarriers. A few studies described the
effects of APOE genotype in combination with age on
brain atrophy (Lind et al. 2006; Cacciaglia et al. 2018;
Martí-Juan et al. 2021). For example, Martí-Juan et al.
reported a nonlinear interaction between APOE ε4 allele
load and aging in the hippocampal surface of cognitively
intact individuals (Martí-Juan et al. 2021). We found that
not only the hippocampus but also many other cerebral
regions demonstrate strong Aging×APOE interactions on

atrophic trajectories. One example is the primary audi-
tory cortex. Recent studies have shown significantly gray
matter atrophy (Ren et al. 2018), white matter integrity
impairment (Ma et al. 2016) and decreased GABA (Gao
et al. 2015) in the primary auditory cortex of the pres-
bycusis elderly. Presbycusis has been indicated as an
independent risk factor for mild cognitive decline and
AD (Panza et al. 2015) and APOE ε4 allele is the common
strong risk factor for presbycusis and AD (Kurniawan
et al. 2012). Thus, the strong Aging×APOE interactions
on Heschel’s atrophic trajectories might indicate that
Heschel’s atrophy is a potential early indicator of AD
conversion for APOE ε4 carriers with younger age. In sum-
mary, these findings indicated that early intervention is
particularly crucial for younger subjects accompanied
with APOE ε4 alleles and cerebral atrophy to prevent
cognitive worsening (Bernick et al. 2012).
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Fig. 8. The association between cognitive decline and hippocampal volume from aMCI to AD. (A) the quadratic cognitive decline trajectories as a
function of time to AD conversion. A linear mixed-effects model was used to estimate the quadratic changes of cognitive functions as a function of time
to AD conversion. (B) The quadratic association between hippocampal volume and cognitive functions. Abbreviations: ADAS13 = Alzheimer’s Disease
Assessment Scale Cognitive-13; CDRSB = Clinical Dementia Rating Scale Sum of Boxes; lHip = left hippocampus; m = month; MMSE = Mini-Mental State
Examination; RAVLTimm = Rey Auditory Verbal Learning Test immediate recall; rHip = right hippocampus.

Identifying AD conversion-related markers is critical
for monitoring the disease progression and predicting
AD conversion (Davatzikos et al. 2009; Misra et al. 2009;
Davatzikos et al. 2011). Based on the identified cerebral
atrophic features, we further tried to test their potential
in predicting the risk of aMCI converted to AD at a
certain follow-up time. It is still a challenge in predicting
whether and when an individual will convert to AD. Early
studies have tried to predict AD conversion by classify-
ing between aMCI-to-AD converters and non-converters
with an accuracy of about 66–81% (see review by Arbab-
shirani et al. (Arbabshirani et al. 2017) for details). How-
ever, the definition of the aMCI converters and non-
converters has technical flaws because non-converters
may be finally converted into AD if their follow-up dura-
tions are long enough. Furthermore, this strategy omits
the time factor (how long the individual will convert) and
thus has limited clinical value. Recently, some studies
have tried to predict the time when individuals will
convert to AD based on the follow-up neuroimaging data
and achieved exciting results (Thung et al. 2018; Vogel
et al. 2018; Bilgel and Jedynak 2019; Lloret et al. 2019;
Nakagawa et al. 2020). For example, Bilgel et al. trained a
linear regression model to predict AD dementia onset age
using a quantitative template created from several neu-
roimaging, CSF, and cognitive biomarkers. They achieved
a mean error of fewer than 1.5 years (Bilgel and Jedynak
2019). Instead, we introduced a survival model termed
Cox proportional hazards regression model in the present

study. This model is commonly applied in clinical pre-
diction, which can provide not only the time when an
aMCI patient will convert to AD (as the example by Bilgel
et al.) but also the conversion risk (or probability) at this
time point (Del Valle et al. 2020). Based on the identified
AD conversion-related 68 cerebral subregions GMV fea-
tures, our model achieved a relative high prediction per-
formance in both cross-validation aMCI testing cohorts
(time-dependent AUCs: 0.688–0.773, average AUC: 0.714)
and in an independent testing cohort who develop from
CN to AD (time-dependent AUCs: 0.800–0.880, average
0.814). Our findings were consistent with a recent study
showing good performance in predicting the time to AD
conversion using a deep learning-based survival model
(Nakagawa et al. 2020). Furthermore, we also evaluated
the predictive potential of the GMV feature of a single
cerebral region, and found that 62/68 regions could sig-
nificantly predict the time to AD conversion with the
top 5 valued subregions including the left amygdala,
left middle temporal gyrus, right inferior temporal gyrus,
left inferior temporal gyrus, and left hippocampus. The
results were consistent with early reported showing the
potentials of biomarkers derived from these regions in
predicting the progression to AD (Desikan et al. 2010;
Tang et al. 2014; Li et al. 2020). Thus, our findings sug-
gested that the GMV of the identified cerebral subregions
derived from the cerebral atrophic trajectory mapping
could be used as potential biomarkers to predict the time
to AD conversion; moreover, we provided the prediction
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Fig. 9. The time-dependent prediction results through Cox proportional hazards regression model. (A) Left panel shows the time-dependent AUCs of
survival model based on all 68 GMV features for the aMCI testing subjects. Black line and shades represent the true AUCs and their 95% CI for the 5
randomizations during cross-validation, and gray line and shades represent the pseudo-AUCs and 95% CI for the null distribution by 1000 permutations.
The right panel shows the histogram of the null distribution of average AUC. (B) Time-dependent AUCs and average AUC of survival model based on
all 68 GMV features for the independent testing cohort from CN to AD conversion. (C) Average AUC of the survival models based on the single GMV
feature of each cerebral subregion for the aMCI testing subjects. Asterisk (∗) indicates statistically significant based on the permutation test (P < 0.05).
Abbreviations: AUC = area under curve of receiver operating characteristic curve; CI = confidence interval; GMV = gray matter volume; sMRI = structural
magnetic resonance imaging.

power of each cerebral GMV biomarker for future valida-
tion and clinical application.

There are some limitations in the present study. First,
as discussed above, on the quantification of subcorti-
cal volumes, the 3D T1W MPRAGE may not be optimal
in segmenting the subcortical structures, especially for
the thalamus and pallidum. Therefore, a multimodal
strategy (incorporating T1-, T2-, PD-, and susceptibility-
weighted images) is preferred to precisely segment the
subcortical structures and quantify their volume and
validate our findings in the subcortical structures in the
future (Plassard et al. 2019). Second, the cerebral atrophic
trajectory from aMCI to AD delineated in the present
study should be validated by other longitudinal datasets
with different races and data collection strategies.
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